

# **Product Name: LOXL2 (9U1) Rabbit Monoclonal Antibody**

Catalog #: AMRe13377

For research use only.

#### **Summary**

**Description** Recombinant rabbit monoclonal antibody

Host Rabbit
Application WB,IP
Reactivity Human

ConjugationUnconjugatedModificationUnmodified

**Isotype** IgG

Clonality Monoclonal
Form Liquid

**Concentration** 0.5mg/ml. The concentration of this product may be batch-dependent. **Storage** Aliquot and store at -20°C (valid for 12 months). Avoid freeze/thaw cycles.

**Shipping** Ice bags

Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% New type preservative

Buffer N and 50% glycerol. Store at +4°C short term. Store at -20°C long term. Avoid freeze / thaw

cycle.

**Purification** Affinity purification

# **Application**

**Dilution Ratio** WB 1:500-1:2000,IP 1:20-1:50

Molecular Weight 87kDa

# **Antigen Information**

Gene Name LOXL2

Alternative Names LOR2; LOX L2; LOXL2; Lysyl oxidase homolog 2; Lysyl oxidase like 2; WS9 14;

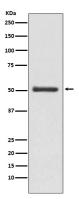
 Gene ID
 4017.0

 SwissProt ID
 Q9Y4K0

**Immunogen** Recombinant protein of human LOXL2

# **Background**

Mediates the post-translational oxidative deamination of lysine residues on target proteins leading to the formation of




deaminated lysine (allysine). When secreted in extracellular matrix, promotes cross-linking of extracellular matrix proteins by mediating oxidative deamination of peptidyl lysine residues in precursors to fibrous collagen and elastin. Mediates the posttranslational oxidative deamination of lysine residues on target proteins leading to the formation of deaminated lysine (allysine) (PubMed:27735137). Acts as a transcription corepressor and specifically mediates deamination of trimethylated 'Lys-4' of histone H3 (H3K4me3), a specific tag for epigenetic transcriptional activation (PubMed:27735137). Shows no activity against histone H3 when it is trimethylated on 'Lys-9' (H3K9me3) or 'Lys-27' (H3K27me3) or when 'Lys-4' is monomethylated (H3K4me1) or dimethylated (H3K4me2) (PubMed:27735137). Also mediates deamination of methylated TAF10, a member of the transcription factor IID (TFIID) complex, which induces release of TAF10 from promoters, leading to inhibition of TFIIDdependent transcription (PubMed:25959397). LOXL2-mediated deamination of TAF10 results in transcriptional repression of genes required for embryonic stem cell pluripotency including POU5F1/OCT4, NANOG, KLF4 and SOX2 (By similarity). Involved in epithelial to mesenchymal transition (EMT) via interaction with SNAI1 and participates in repression of E-cadherin CDH1, probably by mediating deamination of histone H3 (PubMed:16096638, PubMed:27735137, PubMed:24414204). During EMT, involved with SNAI1 in negatively regulating pericentromeric heterochromatin transcription (PubMed:24239292). SNAI1 recruits LOXL2 to pericentromeric regions to oxidize histone H3 and repress transcription which leads to release of heterochromatin component CBX5/HP1A, enabling chromatin reorganization and acquisition of mesenchymal traits (PubMed:24239292). Interacts with the endoplasmic reticulum protein HSPA5 which activates the IRE1-XBP1 pathway of the unfolded protein response, leading to expression of several transcription factors involved in EMT and subsequent EMT induction (PubMed:28332555). Involved in E-cadherin repression following hypoxia, a hallmark of EMT believed to amplify tumor aggressiveness, suggesting that it may play a role in tumor progression (PubMed:20026874). When secreted into the extracellular matrix, promotes cross-linking of extracellular matrix proteins by mediating oxidative deamination of peptidyl lysine residues in precursors to fibrous collagen and elastin (PubMed:20306300). Acts as a regulator of sprouting angiogenesis, probably via collagen IV scaffolding (PubMed:21835952). Acts as a regulator of chondrocyte differentiation, probably by regulating expression of factors that control chondrocyte differentiation (By similarity).

#### Research Area

Signal Transduction

#### **Image Data**



Western blot analysis of LOXL2 expression in MCF7 cell lysate.

Web: https://www.enkilife.com E-mail: order@enkilife.com techsupport@enkilife.com Tel: 0086-27-87002838

