

Product Name: TBC1D4 Mouse Monoclonal Antibody

Catalog #: AMM82061

For research use only.

Summary

Description Mouse monoclonal Antibody

HostMouseApplicationELISA,FCReactivityHuman

ConjugationUnconjugatedModificationUnmodifiedIsotypeMouse IgG1ClonalityMonoclonalFormLiquid

Concentration 1mg/ml

Storage Aliquot and store at -20°C (valid for 12 months). Avoid freeze/thaw cycles.

Shipping Ice bags

Buffer Purified antibody in PBS with 0.05% sodium azide

Purification Affinity Purification

Application

Dilution Ratio ELISA 1:5000-1:20000,FC 1:200-1:400

Molecular Weight 146.5kDa

Antigen Information

Gene Name TBC1D4

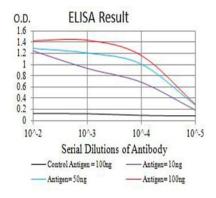
Alternative Names AS160; NIDDM5

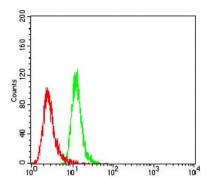
 Gene ID
 9882.0

 SwissProt ID
 O60343

Immunogen Purified recombinant fragment of human TBC1D4 (AA: 574-712) expressed in E. Coli.

Background


This gene is a member of the Tre-2/BUB2/CDC16 domain family. The protein encoded by this gene is a Rab-GTPase-activating protein, and contains two phopshotyrosine-binding domains (PTB1 and PTB2), a calmodulin-binding domain (CBD), a Rab-GTPase domain, and multiple AKT phosphomotifs. This protein is thought to play an important role in glucose homeostasis by


regulating the insulin-dependent trafficking of the glucose transporter 4 (GLUT4), important for removing glucose from the bloodstream into skeletal muscle and fat tissues. Reduced expression of this gene results in an increase in GLUT4 levels at the plasma membrane, suggesting that this protein is important in intracellular retention of GLUT4 under basal conditions. When exposed to insulin, this protein is phosphorylated, dissociates from GLUT4 vesicles, resulting in increased GLUT4 at the cell surface, and enhanced glucose transport. Phosphorylation of this protein by AKT is required for proper translocation of GLUT4 to the cell surface. Individuals homozygous for a mutation in this gene are at higher risk for type 2 diabetes and have higher levels of circulating glucose and insulin levels after glucose ingestion. Alternative splicing results in multiple transcript variants encoding different isoforms.

Research Area

Image Data

Black line: Control Antigen (100 ng);Purple line: Antigen (10ng); Blue line: Antigen (50 ng); Red line:Antigen (100 ng)

Flow cytometric analysis of Hela cells using TBC1D4 mouse mAb (green) and negative control (red).