Product Name: Kv2.1 Rabbit Polyclonal Antibody Catalog #: APRab13162 #### **Summary** **Production Name** Kv2.1 Rabbit Polyclonal Antibody **Description** Rabbit Polyclonal Antibody **Host** Rabbit **Application** IHC-P,IF-P,IF-F,ICC/IF,ELISA **Reactivity** Human, Mouse, Rat ### **Performance** ConjugationUnconjugatedModificationUnmodified **Isotype** IgG ClonalityPolyclonalFormLiquid Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles. **Buffer** Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% New type preservative N. **Purification** Affinity purification #### **Immunogen** Storage Gene Name KCNB1 KCNB1; Potassium voltage-gated channel subfamily B member 1; Delayed rectifier Alternative Names potassium channel 1; DRK1; h-DRK1; Voltage-gated potassium channel subunit Kv2.1 **Gene ID** 3745.0 Q14721.The antiserum was produced against synthesized peptide derived from human **SwissProt ID** Kv2.1/KCNB1. AA range:533-582 ## **Application** IHC-P 1:100-1:300, IF-P/IF-F/ICC/IF 1:200-1:1000, ELISA 1:20000.Not yet tested in other Dilution Ratio applications. **Molecular Weight** # **Product Name: Kv2.1 Rabbit Polyclonal Antibody** Catalog #: APRab13162 ### **Background** Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. Four sequencerelated potassium channel genes - shaker, shaw, shab, and shal - have been identified in Drosophila, and each has been shown to have human homolog(s). This gene encodes a member of the potassium channel, voltage-gated, shab-related subfamily. This member is a delayed rectifier potassium channel and its activity is modulated by some other family members. [provided by RefSeq, Jul 2008],domain: The segment S4 is probably the voltage-sensor and is characterized by a series of positively charged amino acids at every third position., domain: The tail may be important in modulation of channel activity and/or targeting of the channel to specific subcellular compartments, function: Mediates the voltage-dependent potassium ion permeability of excitable membranes. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient.,PTM:Highly phosphorylated on serine residues in the C-terminal. Differential phosphorylation on a subset of serines allows graded activity-dependent regulation of channel gating. Phosphorylation on Ser-457, Ser-541, Ser-567, Ser-607, Ser-656 and Ser-720 as well as the Nterminal Ser-15 are all regulated by calcineurin-mediated dephosphorylation. Particularly, Ser-607 and Tyr-128 are significant sites of voltage-gated regulation through phosphorylation/ dephosphorylation activities. Tyr-128 can be dephosphorylated by PTPalpha and cyt-PTPepsilon. Phosphorylation levels on Ser-607 are supersensitive to neuronal activity. Phosphorylation on Ser-567 is reduced during postnatal development with low levels at P2 and P5. Levels then increase to reach adult levels by P14. Phosphorylation levels on Ser-564 and Ser-607 are greatly reduced during seizures, by 40% and 85% respectively., similarity: Belongs to the potassium channel family. B (Shab) subfamily, subunit: Heteromultimer with KCNG2, KCNG3, KCNG4, KCNS1, KCNS2, KCNS3 and KCNV2., #### Research Area Taste transduction; ## **Image Data** Web: https://www.enkilife.com E-mail: order@enkilife.com techsupport@enkilife.com Tel: 0086-27-87002838 # Product Name: Kv2.1 Rabbit Polyclonal Antibody Catalog #: APRab13162 Immunofluorescence analysis of COS7 cells, using Kv2.1/KCNB1 Antibody. The picture on the right is blocked with the synthesized peptide. Immunohistochemistry analysis of paraffin-embedded human brain tissue, using Kv2.1/KCNB1 Antibody. The picture on the right is blocked with the synthesized peptide. #### Note For research use only.